If it's not what You are looking for type in the equation solver your own equation and let us solve it.
84=3x^2
We move all terms to the left:
84-(3x^2)=0
a = -3; b = 0; c = +84;
Δ = b2-4ac
Δ = 02-4·(-3)·84
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{7}}{2*-3}=\frac{0-12\sqrt{7}}{-6} =-\frac{12\sqrt{7}}{-6} =-\frac{2\sqrt{7}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{7}}{2*-3}=\frac{0+12\sqrt{7}}{-6} =\frac{12\sqrt{7}}{-6} =\frac{2\sqrt{7}}{-1} $
| 49=-5x-6 | | -10=x-6-4 | | 20=j+1 | | 0.45/4.2=p/14 | | 1/5x=1/25 | | 0.2(10x-30)+2x=-97 | | 3+4x=72 | | 11/10=n/14 | | -1+5/4b=-16 | | 4x+4=-2(3x+4) | | (2x+3)+(2x+3)+x+x=72 | | 7+2x=-(x^2/7) | | 2(n+11)=17 | | w/8+4=10 | | x=94x+3 | | 135=(9/5)n | | 7(1-4n)+7n=7+n | | 2(-5x+5)=38-6x | | 2(-4-3n)=-22+n | | 18/x=6/10 | | -2(6p-1)=27-7p | | 2x+3(1.5-1.5)=8/3 | | x=x2-6x+14 | | (2x-20)+(x+20)+(2x-40)=180 | | 24=n/0.6 | | 9-2x-9-16x=-14x-7-4-11 | | -2(4r-5)=-2(3+6r) | | 3-n+4=2 | | 23+40+x=180 | | 23+5+x=180 | | 2x-6-x=-12 | | 6y+4-2y=15+4y-11 |